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1 Introduction 

Location awareness is crucial for wireless networks (Li and 
Liu, 2009), which provides essential contexts for data 
interpretation (Mo et al., 2009) and network operations  
(Li et al., 2008). Owing to the constraints of hardware  
and cost, location information is not an initially available 
knowledge. Instead, only a few nodes, called anchors,  
know their locations in the network set-up step. Then,  
other nodes compute their locations based on inter-node 
distance measurements. This procedure is called network 
localisation. For localisation, a fundamental problem is to 
determine the localisability of a network: whether the 
locations of the non-anchor nodes can be uniquely 
determined, given the distance-measurement and anchor 
information. 

Recently, an increasing number of researchers study the 
localisability issue and achieve many results on identifying 
localisable networks (Aspnes et al., 2006; Eren et al., 2004). 
However, those results are based on rigidity theory, which 
relies on two essential assumptions. First, rigidity theory 
requires accurate ranging. Second, it demands the node 
distribution to be generic, which means any group of nodes 
do not lie in a proper subspace (e.g., any three nodes do not 
lie on a line). Unfortunately, neither of the assumptions can 
be fully satisfied in practice. Hence, rigidity theory can only 
indicate localisability in theory. 

Figure 1(a) shows the ground truth of a network, where 
vertices denote the nodes and edges denote the associated 
nodes that can measure the mutual distances. If all distance 
measurements contain no error, this network is localisable 
according to rigidity theory. However, error is inevitable in 
practice for all ranging techniques and hardware platforms. 
Suppose the ranging error is not more than 10% of the  
real distance values. If error is considered, the originally 
localisable graph in Figure 1(a) has an alternative 
embedding that also satisfies all distance constraints shown 
in Figure 1(b). In this case, the existence of two feasible 
embeddings destroys the localisability of the example 
network. Researchers usually use the stress to evaluate  
the fidelity of embeddings (Goldenberg et al., 2006), 
defined as the squared discrepancy between the  
induced inter-node distances and the measured distances, 
i.e., 2
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− −∑  where E is the edge set, pi  
is the realised position of vertex i and ˆ

ijd  is the measured 
distance between node i and node j. In this example,  
the stress of Figure 1(a) is 4.1. In contrast, the stress  
of Figure 1(b) is 1.2 and will be chosen as the localisation  
 
 
 

result, leading to huge errors in location estimation.  
To summarise, purely structural rigidity fails to guarantee 
the network localisability under noisy measurement. 

Figure 1 Two feasible realisations of a globally rigid graph with 
noisy ranging measurements 

  
 (a) (b) 

To highlight the impact of errors on localisability, we define 
a network is weakly localisable if the network is localisable 
under accurate ranging information. Rigidity theory can be 
used to solve this type of localisability. In contrast, a 
network is strongly localisable if the network has a unique 
realisation under noisy ranging measurement with bounded 
errors. In Section 2, we will give a formal definition of 
strongly localisable network, and show that a strongly 
localisable network has a unique realisation in case  
of errors. 

According to the theory of strong localisability, we 
propose a Localisation Algorithm for Strongly localisable 
network, called LAS, to identify and locate a kind of 
strongly localisable networks: robust trilateration network.  
The insight of LAS is the equivalent conversion of  
the ranging errors. Compared with the existing  
robust localisation approaches, LAS has the following 
characteristics. First, LAS introduces very low cost on the 
localisation performance. Here, we define the performance 
of localisation algorithms as how many nodes can be 
successfully located in a given network. In other words,  
a high-performance algorithm can work well in sparse 
networks. The experiment results show that LAS can 
achieve a full localisation when the average degree is about 
12. This result is of the same level with the traditional 
trilateration-based methods (Moore et al., 2004), which 
means LAS brings little performance degradation.  
Second, LAS is distributed and introduces low cost.  
The communicational and computational cost of LAS is 
both O(n) in a network with bounded node degree,  
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where n is the number of nodes in the network. From the  
perspective of a single node, LAS only introduces O(1) 
communicational and computational cost. 

Major contributions of this work are as follows. 

• We propose the concept of strong localisability, which 
accepts errors when studying localisability. 

• We propose two versions of localisation algorithm 
(LAS and CLAS) to identify and locate robust 
trilateration networks, a special kind of strongly 
localisable networks. They both introduce low 
computational and communicational cost, thus are 
applicable in a resource-constrained network. 

• We conduct extensive simulations to evaluate our 
design. The results show that LAS and CLAS can 
achieve robustness with very low performance cost. 

The rest of this paper is organised as follows. We formally 
define the strongly localisable network and robust 
trilateration network in Section 2. In Section 3, we describe 
the rationale of LAS. In Section 4, we describe the 
implementation of LAS and CLAS design. Experimental 
studies are given in Section 5. We review the related work 
in Section 6 and conclude this work in Section 7. 

2 Preliminary 

In this section, we present the network model and the formal 
definition of strongly localisable network. Moreover, we 
also discuss the concept of robust trilateration network. 

2.1 Strongly localisable network 

Given a network and corresponding distance measurements, 
we use a distance graph G = (V, E) to present the 
measurements, in which the vertices in V denote the nodes 
in the network and each edge (i, j) ∈ E denotes node i and 
node j can measure the mutual distance. The corresponding 
measurement value and maximum error of each edge are 
presented by two functions: d(i, j) : E→R and δ(i, j) : E→R, 
respectively. We suppose a small portion of nodes, called 
anchors, are at known locations. Without loss of generality, 
m anchors are labelled from 1 to m, together with n – m 
ordinary nodes labelled from m + 1 to n, where n denotes 
the total number of nodes in the network. The ground truth 
position of each node is denoted by pi, 1 ≤ i ≤ n. Hereinafter, 
we use a distance graph G as well as the two functions d  
and δ, i.e., (G, d, δ), to model a given network. 

A feasible realisation of a network is a mapping  
P : V→R2 that guarantees || ( ) ( ) || ( , ) ( , )P i P j d i j i jδ− − ≤  
for all (i, j) ∈ E, where ||.|| denotes the Euclidean distance of 
two positions. We say a feasible realisation is globally rigid, 
i.e., weakly localisable, if the distance-preserved mapping is 
unique in a plane (Aspnes et al., 2006). Then, we utilise this 
concept to define the strong localisability of a network. 
 
 

Definition 1: A network is strongly localisable if all of its 
feasible realisations are globally rigid. 

Strong localisability is an extension of weak localisability. 
Weak localisability purely concerns the qualitative attribute 
of the network structure, i.e., stability. In contrast, strong 
localisability also emphasises the quantitative attribute of 
the network structure. Clearly, weak localisability is a 
special case of strong localisability, where the bound of 
error δ(i, j) = 0 for all (i, j) ∈ E. The ground truth of a 
network must be one of the feasible realisations of the 
corresponding graph (G, d, δ). Hence, if a network is 
strongly localisable, the localisation result will not suffer 
from the structural deformation. 

2.2 Robust trilateration network 
Location computation of weakly localisable networks  
is NP-hard (Aspnes et al., 2006), thus location computation 
of strongly localisable network is also NP-hard, motivating 
the research on location-computable networks (Fang et al., 
2009). Among them, the trilateration network is well 
studied. Measuring the distances to three reference nodes at 
known locations, a target node can uniquely determine its 
location through trilateration. A network is call trilateration 
network if it can be located by a series of trilaterations.  
To obtain the computability and strong localisability 
simultaneously, we propose the concept of robust 
trilateration network. 

Definition 2: A robust trilaterative ordering for a graph G is 
an ordering of the vertices 1, 2, …, n, such that, 

• the first m vertices are anchors 

• from every vertex i > m, there are at least 3 edges to 
vertices earlier in the sequence, and all the induced 
subgraphs of the first i, m < i ≤ n, nodes are strongly 
localisable. 

A graph with a robust trilaterative ordering is called a robust 
trilateration graph. And, its corresponding network is a 
robust trilateration network. 

In the two-dimensional case, there are only two 
ambiguities preventing a rigid graph to be uniquely realised: 
flip ambiguity and flex ambiguity (Goldenberg et al., 2006). 
Fortunately, in trilateration graph, there is no chance for flex 
ambiguity, because redundantly rigidity is always satisfied 
in trilaterative extension. Hence, avoiding flip ambiguity is 
essential for achieving a robust trilateration network.  
Flip ambiguity is defined as that a target node has two 
possible positions corresponding to a ‘reflection’ across a 
set of mirror nodes (Goldenberg et al., 2006). Figure 2 
shows an example of flip ambiguity in trilateration. When 
the reference nodes (p1, p2, and p3) are approximately 
collinear, it is ambiguous to determine whether position p  
or p′ (denoted by x-marks) is the correct location estimation 
of the target node. 
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Figure 2 Analysis of flip ambiguity 

 

To obtain a robust trilateration network, we first generate a 
sub-network of all anchors, and then extend the sub-network 
by iteratively finding a node that fulfils the following 
conditions: 

• the node has at least three distance measurements to 
nodes already in the sub-network 

• the node can calculate its location without flip 
ambiguity. 

3 Analysis of the flip ambiguity with noisy 
ranging measurement 

In this section, we first discuss the rationale of the design  
of LAS, especially the idea of equivalent translation of the 
ranging errors. Then, we analyse the translated error and 
solve the problems along with it. 

3.1 Equivalent translation of errors 

We first show the equivalent translation of the measurement 
errors. Suppose we localise a target node by k (k ≥ 3) 
distance measurements to the nodes at known locations, 
called reference nodes. Let a set of tuples { , },i iM p d= < >  
i = 1, 2, …, k, to denote the reference nodes, where pi 
denotes the position of reference node i, and id  denotes the 
measured distance between the target node and the reference 
node i. Each id  contains two parts: the real distance 
between the node pair of di and the error of the 
measurement εi, i.e., .i i id d ε= +  Suppose the exact position 
of the target node is given. We can translate the reference 
node εi distance along the direction of the distance 
measurement and we get the translated position .ip   
After this step, we obtain a group of new measurement 
tuples { , },i iM p d′ = < >  i = 1, 2, …, k. The only difference 
between M and M′ is that there are no measurement errors in 
M′. As a result, if all k translated positions ip  in M′ are not 
likely to be collinear, there is no chance of flip ambiguity. 
 
 

In practice, neither the real position of the target node 
nor the measurement errors are available. Moreover, the 
positions of reference nodes may also contain errors. Hence, 
we cannot obtain the exact form of M′. Instead, we can 
estimate it by the distance measurement error and position 
estimation error. For a reference node i in M, suppose the 
maximum absolute value of the measurement error is δd,i, 
and the maximum absolute value of position estimation 
error is δp,i. Note that both of them may be a function  
of distances and other environmental parameters (Patwari  
et al., 2005). The translated position ip  must lie in the 
equivalent disk, which is defined as a disk centred at pi with 
a radius ri = δd,i + δp,i. Then, we rewrite the tuples ,i ip d< >  
in M′ to this form , , .i i ip r d< >  Let M  denote the set of the 
equivalent measurement, { , , },i i iM p r d= < >  i = 1, 2, …, k, 
which contains the possible positions of translated reference 
nodes and exact distance information. 

Let p and p′ denote the two possible positions due to a 
flip in M, then the perpendicular bisector of line segment 
pp′ must pass through all ip  in M′. Hence, the 
perpendicular bisector must intersect with all equivalent 
disks in M . As shown in Figure 2, we localise a target node 
by three measurements to the nodes indexed by 1, 2 and 3, 
respectively. If the two candidate positions denoted by  
x-mark are ambiguous by trilateration, then the 
perpendicular bisector of them (the dashed line in Figure 2) 
intersects with all the equivalent disks (the dashed circles in 
Figure 2). Hence, we obtain a property of flip ambiguity: 
when the trilateration suffers from flip ambiguity, the 
perpendicular bisector of the candidate positions must 
intersect with all equivalent disks of reference nodes. 

This property provides an inspiration to avoid flips:  
if there does not exist any line that can intersect with all 
equivalent disks of reference nodes, then flip will not take 
place. For a given reference node set, we investigate the 
following Existence of Intersecting Line (EIL) problem to 
estimate the risk of flip ambiguity: 

Given: A set of disks S = {<pi, ri>}, i = 1, 2, …, k, in a 
plane. 

Objective: To determine whether there exists a line 
intersecting with all disks in S. 

3.2 EIL problem of equal radii 

The EIL problem of equal radii focuses on a special case in 
which all the given disks are of the same size. Solving this 
issue can answer two questions in localisation: 

• When we indistinctively estimate the errors  
of the reference nodes, can the target node suffer  
from flip ambiguity? 

• When there is no clear bound of the errors, how much 
error can the reference node set tolerate for avoiding 
flip ambiguity? 
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The following theorem shows the equivalent geometric 
property for solving the EIL problem with equal radii: 

Theorem 1: Given a set of disks S = {<pi, ri>}, if all the 
disks in S are of the same size, i.e., ri = r, i = 1, 2, …, k, the 
EIL problem is equivalent to determine whether the width  
of the centres P = {pi}, denoted as W(P), is larger than 2r.  
The width of P is defined as the minimum distance between 
parallel lines of support of P. 

Proof: Define the medial line of P as the line whose 
distances are at most W(P)/2 with the points in P. Take 
Figure 3 as an example, the distance of the solid lines shows 
the width of the point set, and the dashed line shows the 
medial line of the point set. If W(P) ≤ 2r, then the medial 
line will intersect all disks in S. Hence, there exists a line 
intersecting all disks. If there exists a line intersecting all 
disks in S, then the maximum distance between the line and 
the points in P is r. Hence, the width of P is less than or 
equal to 2r, i.e., W(P) ≤ 2r. In a word, the answer of EIL 
problem of equal radii is equivalent to the condition 
r > W(P)/2. Ñ 

Figure 3 Width of a set and the medial line 

 

We define the value W(P)/2 as the error tolerance of a 
reference node set. The error tolerance is computed by the 
width of the reference node set P. There are several  
high-efficient algorithms to compute the width of a point 
set, such as Rotating Caliper Algorithm (Houle and 
Toussaint, 1988). The algorithm mainly has three steps. 
First, we compute the convex hull of the point set. Clearly, 
the points determining the width of the set are definitely on 
the convex hull. Second, we find an arbitrary antipodal  
vertex–edge pair. We call an edge and a vertex of the 
convex hull an antipodal vertex–edge pair if parallel lines of 
support of P contain the edge and vertex. In Figure 3, vertex 
c and edge ab is an antipodal vertex–edge pair of the  
convex hull abcda. Third, we ‘rotate’ the initial antipodal 
vertex–edge pair to enumerate all the antipodal vertex–edge 
pairs of the convex hull, and report the half of the minimum 
distance of the antipodal vertex–edge pairs as the error 
tolerance, as shown in Algorithm 1. 

Suppose there are k points in set P. Computing the 
convex hull of P in step 1 leads a complexity of O(klogk) 
time. Since there are at most k vertices or edges in CH, 
finding the initial antipodal vertex can be done in O(logk) 
time using binary search. Finally, the rotating calipers 
method can generate all the antipodal vertex–edge pairs in 
O(k) time. Hence, the overall complexity of Algorithm 1 is 
O(klog k). 

Algorithm 1 ErrorTolerance 

 

3.3 EIL problem of unequal radii 

It is hard to solve the EIL problem of unequal radii by the 
macrostructure of the disks. Hence, we adopt boundary 
check to solve the EIL problem of unequal radii, as shown 
by Theorem 2. 

Theorem 2: Given a set of disks S = {<pi, ri>}, 
i = 1, 2, …, k, the EIL problem is equivalent to determine 
that whether there exists a common tangent of two disks in S 
that intersects with all disks in S. 

Proof: Let IL(S) denote the intersecting line set of the disk 
set S. The EIL problem is to determine whether IL(S) = ∅. 
Clearly, if IL(S) = ∅, there is no common tangent of two 
disks in S that intersects with all disks in S. Then, to analyse 
the case of IL(S) ≠ ∅, we pre-process the disk set S. When a 
disk lies completely in another disk, any line intersecting 
with the inner disk will definitely intersect with the outer 
one. In this case, we can safely delete the outer disk from S. 
We use S′ to denote the pre-processing result of S. Then, 
any pair of disks in S′ have common tangents. In the 
following, we want to prove that there must exist a common 
tangent that intersects with all disks if IL(S′) ≠ ∅. The 
boundary of IL(S′) is a line that is about to violate the 
condition of intersecting with all disks in S′. Hence, a 
boundary line must be tangential to one disk. If the line is 
not tangential to any other disk, we rotate the line round the 
centre of the disk till it reaches the border of another disk.  
In this case, the line becomes a common tangent of  
two disks in S′ and intersects with all disks. Ñ 

We show all boundary lines of a disk set in Figure 4. On the 
basis of Theorem 2, we propose an algorithm to solve the 
EIL problem with unequal radii, as shown in Algorithm 2. 

Figure 4 The boundary of intersecting line set 
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Algorithm 2 EIL 

 

Suppose there are k disks in set S. Step 1 needs to check all 
disk pairs and leads a complexity of O(k2) time. The size of 
S′ is at most k. Step 3 calls the ErrorTolerance procedure in 
Algorithm 1 and leads a complexity of O(klogk) time.  
In fact, this step is optional and helps to make a direct 
decision in two extreme cases. The outer loop of Step 4 
needs to repeat O(k2) times. The maximum number of 
common tangents of two disks is four, i.e., |CT| ≤ 4 in  
Step 4. Thus, the inner loop of Step 4 repeats O(1) times. 
Moreover, checking intersection of all disks costs O(k) time. 
Hence, the boundary checking in Step 4 can be done  
in O(k3) time, and the overall complexity of Algorithm 2  
is O(k3). 

4 Implementation of LAS design 

The design of EIL test is a robust complement of traditional 
localisation scheme. Hence, it can be directly applied to the 
traditional trilateration or the cluster-based localisation 
algorithms. We call these two implementations LAS and 
CLAS, respectively. 

LAS inherits the merits of trilateration (Goldenberg  
et al., 2006; Eren et al., 2004): easy to implementation  
and fully distributed. The distributed trilateration is 
implemented as follows. First, nodes measure and record the 
distances with direct neighbours through the ranging 
devices. Second, anchor nodes broadcast their locations to 
their direct neighbours. Third, each node overhears the 
location broadcast of its neighbours. If the node can collect 
at least three location broadcasts of its neighbours,  
it computes the location of itself by trilateration. Then, it 
broadcasts its location to its direct neighbours. Finally,  
by waiting for sufficient long time, if a node still cannot 
collect three location broadcasts from its neighbours,  

it marks itself as an unlocalised node. LAS only need to 
enhance the third step to obtain robustness. In the third step, 
LAS requires the reference node set to pass the EIL test, 
before it performs a trilateration. Hence, LAS introduces 
very low additional cost when compared with traditional 
trilateration. If the number of neighbours in the network is 
bounded by a constant, the communicational cost and the 
computational cost are both O(n), where n is the number of 
nodes in the network. 

CLAS adopts the clusters to relax the requirements of 
anchor distribution. CLAS first generates a local coordinate 
system of a cluster. Then, nodes join to the cluster by 
trilateration, localising itself in the local coordinate system. 
Finally, CLAS localises the clusters having at least three 
anchors to the physical coordinate system by coordinate 
system registration (Horn et al., 1988). Clusters make the 
CLAS less depend on the anchor distribution, thus may 
increase the performance of localisation in sparse networks. 
Nevertheless, the way generating and converting coordinate 
system may introduce new sources of errors, thus it may 
potentially increase the error of the result. To obtain 
robustness, CLAS also requires nodes to pass the EIL test, 
when joining to the local clusters. Moreover, when CLAS 
localise the clusters, it demands the anchors to pass the EIL 
test to avoid global flip ambiguity. The detail of CLAS is 
shown in Algorithm 3. 

Algorithm 3 CLAS 

 

5 Experiment 

In this section, we conduct extensive simulations to evaluate 
the proposed algorithms. 
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5.1 Experiment set-up 

We generate uniformly random distributed network 
instances of 200 nodes in a square region. We randomly 
select a certain proportion of the deployed nodes as anchors. 
We use the parameter of distance measurement range to 
control the mean degree of the network. The distance 
information between neighbouring nodes is corrupted by 
additive white Gaussian noise (Liu et al., 2006) N(0, σ2) and 
we bounded the error by 3σ. We control the following 
parameters to compare the efficiency of LAS and CLAS: 

• the mean degree of the network instances 

• the proportion of anchors in the network 

• the standard deviation of the distance-measurement 
noise. 

We evaluate the efficiency of LAS and CLAS in three 
aspects. First, the number of successfully localised nodes 
indicates the performance of each algorithm. Second, the 
Standardised Position Estimation Error (SPEE) shows the 
error of the result. SPEE is defined as the percentage value 
between the mean position estimation error and the 
maximum distance-measurement range: 

1max

1 ˆSPEE || || 100%,
n

i i
i

p p
nR =

= − ×∑  

where n is the total number of successfully localised nodes, 
Rmax is the maximum distance measurement range, pi is the 
real position of node i and ˆ ip  is the estimated position of 
node i. If n = 0, we define SPEE = 0. Third, the 
Standardised Distance Estimation Error (SDEE) indicates 
the fidelity between the estimated distance and the measured 
distance. SDEE is defined as the percentage value  
between the distance estimation error and the maximum  
distance-measurement range: 

, ,max

1 ˆ ˆ|| || ,
ij

i j ij
i j N d D

SDEE p p d
mR ∈ ∈

= − −∑  

where N is the set of located nodes, Rmax is the maximum 
distance measurement range, D is the set of distance 
measurement, ˆ ip  is the estimated position of node i and m 
is the total number of such measurement pairs. If m = 0,  
we define SDEE = 0. 

We implement CLAS and LAS algorithm based on the 
error tolerance. We set the error tolerance threshold as the 
maximum possible error, i.e., 3σ. We compare the CLAS 
and LAS algorithms with the state-of-the-art design, Robust 
Quadrilaterals (RQ) (Moore et al., 2004). RQ shares the 
same design goal with us, which aims to acquire the 
structural stability with noisy ranging measurements. RQ 
acquires robustness by setting a threshold on the geometric 
property of the local four-node clusters. Stitching these 
robust local clusters, the resultant global cluster will not 
face structural deformation either. We implement full RQ 
algorithm with cluster optimisation in the cluster generation 
step, and the clusters are merged by the coordinate system 
registration (Horn et al., 1988). In the following sections, 

we will investigate the performance of LAS and CLAS, as 
well as the impact of cluster-based method on the accuracy 
of localisation. 

5.2 Overview of the algorithms 

We demonstrate the execution of the RQ, LAS and CLAS 
algorithm in a randomly generated network instance  
with 200 nodes, and the average degree is about 20.  
We randomly select 10% nodes as anchors, and set the 
errors as much as 10% of the distance measurement value. 
Figure 5 shows the result of each algorithm, in which solid 
squares denote anchors, soft dots present the ground truth 
positions of the nodes, and the soft squares indicate the 
estimated positions of the nodes. 

Figure 5 Overview of the algorithms: (a) RQ; (b) LAS  
and (c) CLAS 

 
(a) 

 
(b) 

 
(c) 
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Figure 5(a) shows the result of RQ algorithm. It locates 103 
out of the total 180 non-anchor nodes. The SPEE is about 
4.7 and the SDEE is about 2.6. Figure 5(b) shows the result 
of LAS algorithm. It locates all the 180 non-anchor  
nodes. The SPEE is about 2.3 and the SDEE is about 1.3. 
Figure 5(c) shows the result of CLAS algorithm. It locates 
all the 180 non-anchor nodes. The SPEE is about 2.7 and 
the SDEE is about 1.4. 

The RQ algorithm locates fewer nodes than the other 
two algorithms, because it requires generating uniquely 
distributed overlapped local clusters. However, to guarantee 
robustness, RQ drops a large proportion of the generated 
local clusters. Hence, it requires high average degree to 
compensate the shortage of the local clusters. 

The LAS algorithm gets the lowest SDEE and SPEE, 
because it does not base on clusters. Clusters may introduce 
errors both in generation step and in coordinate system 
conversion step. In generation step, the local coordinate 
system is generated by the inter-node distances. When the 
inter-node distances contain errors, the corresponding local 
coordinate will be non-orthogonal and this can further 
influence all nodes in the cluster. In the coordinate system 
conversion step, the conversion is purely based on the 
position of anchors. This procedure will introduce additional 
errors for the nodes that are far from the anchor nodes, and 
the error of the conversion will be linearly amplified by the 
distance to anchors. 

5.3 The impact of average degree 

In this section, we investigate the impact of average degree. 
We fix the anchor proportion to 10% and set the errors as 
much as 10% of distance measurement. We use an empirical 
formula to control the average degree of the network 
instances into approximately linear distribution. We set the 
step length to be about 0.5 and report the result in Figure 6. 

Figure 6(a) plots the proportion of localised nodes 
against average degree. When the average degree increases, 
all algorithms perform better. The LAS and CLAS 
algorithm can achieve 100% localisation when the average 
degree is greater than 12. The CLAS algorithm outperforms 
the LAS algorithm when the average degree varies from 5 to 
10. In contrast, the RQ algorithm requires the average 
degree to be over 25 for full localisation. RQ requires 
generating uniquely overlapped local clusters, thus RQ 
requires higher network density than the other two 
algorithms. 

Figure 6(b) and (c) plots the SPEE and SDEE against 
average degree, respectively. The SPEE and SDEE of the 
LAS and CLAS algorithm decrease when the average 
degree enlarges. Nevertheless, the SPEE and SDEE of RQ 
are quite stable over all the tested range. This shows that the 
RQ algorithm cannot benefit from the increase of network 
density. No matter how many neighbours are available, RQ 
always generates four-node clusters and uses the six  
inter-node distances to form local coordinates. In contrast, 
LAS and CLAS can perform a more accurate estimation 
through all available ranging measurements, which provides 
better estimation than RQ does. 
 

Figure 6 The impact of average degree: (a) performance;  
(b) position estimate error and (c) distance estimate 
error (see online version for colours) 
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(b) 

 
(c) 

5.4 The impact of anchor proportion 
In this section, we investigate the impact of anchor density. 
We fix the average degree about 15 and set the errors as 
much as 10% of distance measurement. Figure 7 reports the 
mean value of 50 network instances in each anchor density 
configuration. 

Figure 7(a) plots the proportion of located nodes against 
anchor density. CLAS outperforms LAS when anchors are 
not adequate. For a high anchor density, they both can 
locate almost all nodes in the network and keep this level 
when anchor density increases. RQ performs better when 
anchor density enlarges, because more anchors can help to 
localise the local clusters. 

Figure 7(b) plots the SPEE against anchor density.  
The SPEE of LAS algorithm decreases when more anchors 
exist. However, the CLAS and RQ algorithm do not benefit 
from anchor density increase. The cluster-based method has 
the inherent limitations on the accuracy of the coordinate 
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system generation and localisation procedure as discussed 
before, and these errors cannot be reduced by anchors. 

Figure 7(c) plots the SDEE against anchor density. All 
the algorithms have little change when anchor density 
varies, because SDEE indicates the mean distance 
estimation error. This error is dominated by the error of 
distance measurement, so that the anchor density does not 
influence it. We observe that both SPEE and SDEE of RQ 
are quite low at the point 5% anchors. We define the SPEE 
and SDEE is zero when no nodes are successfully localised, 
thus the values of SPEE and SDEE will be low when RQ 
fails locating some of network instances. 

Figure 7 The impact of anchor proportion: (a) performance;  
(b) position estimate error and (c) distance estimate 
error (see online version for colours) 
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5.5 The impact of error magnitude 

In this section, we investigate the impact of error 
magnitude. We fix the anchor proportion to 10% and set the 
average degree about 25. Figure 8 reports the mean value of 
50 network instances in each configuration of the maximum 
error proportion. 

Figure 8 The impact of error magnitude: (a) performance;  
(b) position estimate error and (c) distance estimate 
error (see online version for colours) 
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Figure 8(a) plots the proportion of located nodes against the 
standard deviation of the ranging error. All the algorithms 
perform worse when the measurement errors enlarge, 
because higher error will make more trilateration non-robust 
for flip ambiguities, thus to prevent some nodes to be 
located. High error affects RQ more, because RQ relies on 
overlapped local clusters to process localisation. Higher 
error will affect the generation of local clusters in cluster 
generation step, and then influence the whole following 
procedure. 

Figure 8(b) and (c) plots the SPEE and SDEE against 
error magnitude, respectively. For the LAS and CLAS, the 
SPEE and SDEE are approximately linear with the error 
magnitude. The SPEE and SDEE of RQ are linear with the 
error, when the error is less than 15% of the distance 
measurement. Then, they start to decrease, because the 
SPEE and SDEE will be zero when no nodes are located in 
some of the network instances. 
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6 Related work 

Localisation in wireless networks has attracted significant 
research interest in recent literatures (Liu et al., 2010).  
In this section, we briefly review some typical works in this 
area, including the localisation theory and the error control 
algorithms. 

6.1 Theory of network localisation 

Recently, a theory of network localisation is proposed to 
investigate network localisation problem (Aspnes et al., 
2006). First, Aspnes et al. (2004) show the NP-hardness of 
the network localisation problem and propose to investigate 
the localisation problem in sparse networks. Then, Eren et 
al. adopt rigidity theory to investigate the network 
localisability problem (Eren et al., 2004; Goldenberg et al., 
2005). Afterwards, Fang et al. propose to bridge the gap 
between the localisable network and location computation 
by the concept of sequential localisation (Fang et al., 2009). 
Finally, based on localisation theory, a series of algorithms 
are proposed to achieve efficiency on localisation 
(Goldenberg et al., 2006; Wang et al., 2008). In addition, 
some algorithms also utilise rigidity theory (Lederer et al., 
2008; Wang et al., 2009; Priyantha et al., 2005) to achieve 
other design goals. Nevertheless, rigidity theory is not  
so applicable to model practical localisation problem, 
because the fundamental assumption of rigidity theory  
is that the distances between the nodes are accurate.  
The ranging measurement, however, always contains errors 
in practice (Moore et al., 2004). To the best of our 
knowledge, there are no works that adopt the practical 
model for the localisability problem. In a word, our design 
is an extension on both theory and algorithm of network 
localisation. 

6.2 Error control in localisation 

There is a large category of localisation algorithms aiming 
to diminish the errors in the result (Ni et al., 2004; Shang 
and Ruml, 2004; Lim and Hou, 2005; Niculescu and Nath, 
2004; Savvides et al., 2003, 2005; Whitehouse et al., 2005; 
Li and Liu, 2010; Liu et al., 2007, 2008), when the ranging 
information is not accurate. Moore et al. (2004) propose the 
concept of robust quadrilaterals to avoid flip ambiguity with 
noisy ranging measurement. They choose robust geometric 
structures in the network as the basic localisation units to 
guarantee the structural uniqueness of located nodes. 
Besides, Kannan et al. (2007, 2008) complement this work 
by general geometric analysis. To the best of our 
knowledge, this design is the most recent work to achieve 
structural uniqueness with noisy inter-node distances. 
However, their approach is too aggressive for flip ambiguity 
prediction, so that it will greatly decrease the localisation 
performance. Moreover, simulation result shows that based 
on the small-scale clusters will suffer error accumulation  
in the result. In contrast, LAS can achieve structural 
uniqueness as well as high localisation performance. 
 

Liu et al. (2006) utilise a probabilistic model to estimate 
and control errors of trilateration. They evaluate the possible 
errors in each trilateration and select robust reference nodes 
to minimise the estimated error of the result (Yang and Liu, 
2010). Their design mainly focuses on the overall 
estimation error of the result. Nevertheless, the estimation of 
error will not exclude the structural deformation of the 
result, thus their approach provides no guarantee on the 
localisability of the result. In contrary, LAS can guarantee 
the structural uniqueness of the result and the error of the 
result is proportional to the ranging errors. Fortunately,  
we can adopt error control in LAS to benefit from both of 
the advantages, i.e., the structural stability and better error 
control. 

Basu et al. (2006) propose an iterative method to locate 
nodes with noisy distance and angle information. They use 
linear programming to address the relaxed form of the 
raised problem. Their design can also guarantee to avoid 
structural deformation and also provide the error estimation 
in the result set. However, this design relies on the 
knowledge of both distance and angle measurement of the 
neighbouring nodes, which are not easy to acquire in 
practice. 

Some researchers utilise the Cramer-Rao Lower Bound 
(CRLB) to characterise the error of network localisation 
(Niculescu and Nath, 2004; Savvides et al., 2003, 2005; 
Patwari et al., 2005). CRLB provides a lower bound  
on the variance achievable of an unbiased location  
estimator (Patwari et al., 2005). However, all probabilistic 
methods, including CRLB, cannot guarantee structural 
uniqueness of localisation as discussed in Section 2.  
Further, CRLB requires the estimator to be unbiased,  
which is not so realistic for the off-the-shelf location 
estimators. 

7 Conclusions and future works 

In this paper, we introduce the concept of strong 
localisability to achieve the structural stability for networks 
with noisy ranging measurements. We also propose an 
algorithm, called LAS, to identify and locate a kind of 
strongly localisable network: robust trilateration network. 
Compared with the existing approaches, LAS introduces 
lower cost on performance and controls error better. 
Extensive experiments are conducted to evaluate the 
efficiency of the proposed algorithms. 

The future work leads into two directions. First, we  
will design low complexity algorithms for EIL test of 
unequal radii. Second, we will investigate how to obtain 
strong localisability in a general network. Currently,  
we are implementing this design in our ongoing projects. 
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